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Abstract  

Biomass burning is an important source of atmospheric greenhouse gases and aerosols, and its 
emissions can be estimated using Fire Radiative Power (FRP) retrievals from polar-orbiting and 
geostationary satellites. Accurate and timely estimation of biomass-burning emissions (BBE) 
requires high-spatiotemporal-resolution FRP that is characterized by accurate diurnal FRP cycle. 
This study is to estimate hourly reliable BBE in a 0.25°×0.3125° grid across the conterminous 
United States (CONUS) to be used in chemical transport models for air quality forecast. To do 
this, this study for the first time fused FRP retrievals from the Geostationary Operational 
Environmental Satellite (GOES) with those from Moderate Resolution Imaging 
Spectroradiometer (MODIS) Collection 6 after GOES FRP was angularly adjusted and was 
further calibrated against MODIS FRP. The FRP data was obtained from Terra and Aqua 
MODIS 1km active fire products with fire observations of four times a day and from 4km GOES 
WF_ABBA (WildFire Automated Biomass Burning Algorithm) fire products for GOES-W 
(GOES-11 and 15) and GOES-E (GOES-13) with observations every 5-15 minutes across the 
CONUS from 2011-2015. The diurnal FRP cycles at an interval of 15 minutes for a grid were 
reconstructed using the ecosystem-specific diurnal FRP climatology and actually available 
MODIS-GOES fused FRP, which were applied to estimate hourly BBE across the CONUS. The 
results indicate that the reconstructed diurnal FRP cycle varied significantly in magnitude and 
shape among 45 CONUS ecosystems. The biomass burning released 717 Gg particulate matter 
smaller than 2.5 µm in diameter (PM2.5) in the CONUS each year; however, it presented 
significant temporal (diurnal, seasonal, and interannual) and spatial variations. Finally, the BBE 
estimates were evaluated using available data sources and compared well (a difference of ~4%) 
with emissions derived from Landsat burned areas in the western CONUS and with hourly 
carbon monoxide emissions simulated using a biogeochemical model over the Rim Fire in 
California (difference < 1%). The BBE estimates showed similar seasonal variation to six 
available BBE inventories but with variable magnitude.  
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1. Introduction 

Biomass burning from wildfires emits a significant amount of trace gases and aerosols that 
profoundly impact climate, weather, carbon budget, and public health (Akimoto, 2003; Bowman 
et al., 2009; Johnston et al., 2016; Kaufman et al., 2002). Global wildfires, on average, annually 
burn approximately 350 Mha of land (Giglio et al., 2013) and release 2.2 Pg carbon 
(approximately 23% of fossil-fuel carbon emissions in 2014 (Boden et al., 2017)) into the 
atmosphere (van der Werf et al., 2017), which has been projected to cause a net global warming 
of 0.4 K over 20 years by 2026 (Jacobson, 2014). Smoke aerosols (i.e., black carbon and organic 
carbon) emitted from biomass burning is thought to have cooled the Earth by 0.06-1.30 W m-2 in 
the industrial era (Bond et al., 2013) and warm atmosphere above low-level clouds as well (Ge et 
al., 2014). Smoke aerosols threaten human health by degrading local to regional air quality. For 
example, fire-related fine particulate matter smaller than 2.5 µm in diameter (PM2.5) cause 
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several hundreds of thousands of premature deaths worldwide annually (Johnston et al., 2016; 
Lelieveld et al., 2015). Biomass-burning emissions (BBE) significantly influence the accuracy of 
atmospheric models and numerical weather models for forecasting air quality and meteorological 
conditions (Reid et al., 2009; Wang et al., 2009). Accurate and timely estimation of BBE is 
needed for climate, weather, environment, and air quality applications. 

BBE has been estimated since 1980s as the product of burned area, biomass fuel load, the 
fraction of biomass burned, and emission factors (Seiler and Crutzen, 1980; van der Werf et al., 
2017). The degree to which these four parameters are estimated determines the accuracy of BBE 
estimates. Prior to the satellite era, BBE was highly uncertain and was estimated by statistical 
extrapolation of results from local experiments to regions and worldwide (Seiler and Crutzen, 
1980; Crutzen & Andreae, 1990; Hao et al., 1990), which was briefly reviewed by Wang et al. 
(2018b). In the satellite era, the burned area and hotspots retrieved from satellite observations 
have elevated the capability of quantifying BBE. Particularly, with the availability of the global 
systematically generated Moderate Resolution Imaging Spectroradiometer (MODIS) fire 
products (Justice et al., 2002), regional and global BBE products have been widely produced, 
including the Global Fire Emissions Database (GFED) (van der Werf et al., 2017), the Fire 
Locating and Modeling of Burning Emissions (FLAMBE) (Reid et al., 2009), the Fire INventory 
from NCAR (FINN) (Wiedinmyer et al., 2011), and the Wildland Fire Emissions Information 
System (WFEIS) (French et al., 2011). Although large improvements have been achieved in the 
estimation of burned area (Mouillot et al., 2014; Giglio et al. 2018), it is still challenging to 
accurately estimate BBE using the conventional bottom-up model. A comparison of several BBE 
inventories over northern Africa suggested that the bottom-up and top-down based BBE could 
differ by a factor of ~10 (Zhang et al., 2014). This is due to the fact that burned areas are often 
underestimated by moderate-resolution satellites (Boschetti et al., 2004; Kasischke et al., 2011), 
and fuel loadings are static and may differ by more than 35% among different fuel datasets 
(Zhang et al., 2008). 

Retrieval of the fire-released radiative energy from satellite radiance provides alternative 
ways to estimate BBE. Controlled fires experiments in laboratory and landscape demonstrated 
that the instantaneous radiative energy or Fire Radiative Power (FRP) is related to the rate of 
biomass combustion, and the total biomass combusted in a fire event is a function of the 
temporal integration of FRP, termed Fire Radiative Energy (FRE), and FRE biomass combustion 
coefficient (FBCC) (Freeborn et al., 2008; Hudak et al., 2016; Kremens et al., 2012; Wooster, 
2003; Wooster et al., 2005). This empirical relationship was also confirmed in wildfires based on 
surface biomass consumption and satellite-derived FRP and emissions retrievals (Konovalov et 
al., 2014; Li et al., 2018b), in which FRP is retrieved from radiances of fire pixel and non-fire 
ambient background at 4-μm band (Wooster et al., 2003). The relationship has been frequently 
used to estimate regional to global BBE using FRP retrievals from polar-orbiting satellites and 
geostationary satellites (Ellicott et al., 2009; Kaiser et al., 2012; Roberts et al., 2009; Vermote et 
al., 2009; Zhang et al., 2012). For instance, daily global BBE is operationally produced using 
FRP retrievals from MODIS and global geostationary satellites in the Quick Fire Emissions 
Dataset (QFED) (Darmenov & Silva, 2015), the Global Fire Assimilation System 
(GFAS)(Kaiser et al., 2012), and the Global Geostationary Satellite Biomass Burning Emissions 
Product (GBBEP-Geo) (Zhang et al., 2012). Another approach is to relate BBE rates directly to 
FRP using smoke emission coefficients (Freeborn et al., 2008; Ichoku & Kaufman, 2005). 

Smoke emission coefficients in a 0.1° grid globally are available in the Fire Energetics and 
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Emissions Research (FEER) product, which can be used to convert FRP to the rate of biomass-
burning emissions (Ichoku & Ellison, 2014). These smoke emission coefficients have been 
further refined based on MODIS Aerosol Optical Depth (AOD) and Meteosat SEVIRI (Spinning 
Enhanced Visible and Infrared Imager) FRP retrievals and applied to estimate BBE across Africa 
continent (Mota & Wooster, 2017).    

The FRP-based BBE estimates are sensitive to the spatiotemporal resolution of the 
satellite-based FRP data. Sensors onboard the geostationary satellites (e.g., Meteosat SEVIRI 
and Geostationary Operational Environmental Satellite (GOES-11, 13, and 15) Imager) generally 
observe fires once every 5-15 minutes. The high-temporal FRP retrievals enable to establish 
diurnal FRP variation (cycle) to estimate FRE and BBE at an hourly-to-daily resolution. 
However, their coarse spatial resolution (e.g., nominal 4 km at nadir for GOES) limits the 
capability of detecting small and cool fires (e.g., SEVIRI is unable to detect fires with FRP < 50 
MW (Roberts & Wooster., 2008)), which could result in underestimation of FRE by 50% 
(Freeborn et al., 2009) and BBE by a factor of up to four (Roberts et al., 2009; Zhang et al., 
2012). On the other hand, the polar-orbiting MODIS onboard Aqua and Terra is able to sense 
relatively smaller and cooler fires (e.g., fire pixel with FRP > 10 MW (Roberts & Wooster., 
2008)) due to higher spatial resolution of MODIS (nominal 1 km) than geostationary sensors. 
However, each MODIS sensor only provides observations for the same location twice a day but 
no fire observation due to cloud obscuration and orbital gaps at low latitudes (Wang et al., 
2018b). Thus, the polar-orbiting sensors (e.g., MODIS) are incapable of characterizing the 
diurnal FRP variation at hourly resolution. Because fires have temporal fluctuations in fire 
radiative power, the FRE estimated by numerical integration of satellite FRP measurements is 
sensitive to FRP undersampling during temporal gaps between two-successive fire observations 
(Boschetti & Roy, 2009; Kumar et al., 2011). In summary, present geostationary and polar-
orbiting sensors have different limitations in characterizing the diurnal FRP cycle accurately. 
Note that diurnal FRP cycle here is referred to as the diurnal variation of FRP per grid cell, 
which differs from the term of diurnal fire cycle that represents the diurnal variation in the total 
number of active fire detections in a given region (Giglio, 2007).   

Two general strategies have been attempted to derive high-spatiotemporal-resolution FRP. 
The first is to approximate diurnal FRP cycles with predefined Gaussian functions, and fit them 
to MODIS FRP retrievals (Andela et al., 2015; Ellicott et al., 2009; Konovalov et al., 2014; 
Vermote et al., 2009). These predefined Gaussian functions may work well for some particular 
regions rather than the continental to global extents because diurnal FRP cycle varies with fuel 
types and seasons (Andela et al., 2015; Roberts et al., 2009). The second strategy is to predict the 
MODIS-equivalent FRP estimates from 15-minute SEVIRI FRP retrievals using the optimized 
SEVIRI-to-MODIS FRP ratio (Freeborn et al., 2009). However, derivation of the optimized FRP 
ratio requires a large number of samples cumulated in large spatiotemporal windows (i.e., 5°grid 
and 15 min, or 1°grid and one month) (Freeborn et al., 2009) that hardly meet the requirements 
of operational and near-real-time emissions inventories (Andela et al., 2015).   

This study is to develop a new algorithm to estimate hourly BBE at a 0.25° latitude by 
0.3125° longitude grid across the conterminous United States (CONUS) by fusing FRP from 
Terra and Aqua MODIS and GOES-E and GOES-W observations. This dataset with the 
specified spatiotemporal resolution is to serve as emissions input in chemical transport models 
(e.g. GEOS-CHEM) (Bey et al., 2001; Eastham and Jacob, 2017) and in NOAA (National 
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Oceanic and Atmospheric Administration) Environmental Modeling System (NEMS) for aerosol 
forecasting (Lu et al., 2016; Wang et al., 2018a).  
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2. Methodology 

Estimation of hourly BBE across the CONUS was conducted in the following steps. First, 
an empirical model was developed to adjust GOES FRP retrievals at large view zenith angles 
(VZA) and the adjusted GOES FRP values were further calibrated against and fused with 
MODIS FRP retrievals. Second, the calibrated GOES FRP was applied to establish the diurnal 
FRP climatology for 45 ecosystems at a grid level. Third, the fused FRP estimates were then 
fitted to the ecosystem-specific diurnal FRP climatology to reconstruct diurnal FRP cycles at a 
15-minute interval in a grid that were applied to estimate hourly BBE of PM2.5 and carbon 
monoxide (CO) in a grid. Finally, the BBE estimates were evaluated and validated.  

2.1. Fire radiative power from polar-orbiting and geostationary satellites 
2.1.1. MODIS FRP 

The MODIS active fire products provide fire detections at the satellite overpass times 
(Giglio et al., 2016). Terra and Aqua respectively cross the equator at approximately 10:30 AM 
and 1:30 PM local time during daytime and 10:30 PM and 1:30 AM during nighttime. The 
MODIS Level 2 active fire products (abbreviated MOD14 for Terra and MYD14 for Aqua) 
contain for each fire pixel the detection time, geographical coordinate, confidence (low, nominal, 
and high), fire radiative power (units: MW per pixel), brightness temperature at the MODIS band 
21 (3.660-3.840 µm) and band 31 (10.780-11.280 µm), and average brightness temperature of 
the surrounding non-fire pixels at bands 21 and 31 (Giglio, 2015). FRP estimates in MODIS 
Collection 6 (C6) active fire product are retrieved following the method developed by Wooster et 
al. (2003) using the radiances of a fire pixel and ambient non-fire pixels at the band 21, and the 
area of the fire pixel (Giglio et al., 2016).  

This study obtained the MODIS C6 Level 2 active fire products (MOD14 and MYD14) 
for the period of 2011-2015 from NASA Level-1 and Atmosphere Archive & Distribution 
System (LAADS) (https://ladsweb.modaps.eosdis.nasa.gov/). This product is defined in the 
MODIS sensing geometry (a 5-minute granule) that covers an area of approximately 2340 by 
2030 km along the scan and track directions, respectively. The MODIS scans 10 1-km lines per 
mirror rotation over ±55°. The pixel dimension increases from 1 km at nadir to 2.01 km and 4.83 
km along the track and scan directions at the scan edge, respectively, which results in 

oversampling between adjacent scans by up to 50% from the scan angles of 24° to scan edge 
(Wolfe et al., 2002; Wolfe et al., 1998). As a result, fires can be duplicately detected (Freeborn et 
al., 2014; Peterson et al., 2013).  

The inter-scan duplicate fire detections were corrected in this study using the approach 
proposed by Li et al. (2018a). Specifically, fire pixels were considered as duplicate detections in 
consecutive scans (one detection per scan) if they met the following conditions: (1) Fires were 
detected at the same satellite view angles. (2) Time difference between any two detections was 
less than 8 seconds because the same point on the Earth surface could be sensed by up to three 
temporally MODIS adjacent scans at the scan edge during a time period of 4.431seconds (~1.477 
seconds per scan × 3 scans) (Wolfe et al., 2002). (3) The distance between the centers of any pair 
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of fire detections was shorter than the along-track dimension of the fire pixels because adjacent 
scans primarily overlapped each other along the track direction. For each pair of duplicate 
detections, one of them remained while the other was removed, in which the average FRP was 
used for the retained detection. Further, the duplicate fire detections can also result from the 
triangle-shaped point spread function (PSF) of MODIS (Freeborn et al., 2014) in the along-scan 
direction, which were not corrected in this study because an effective algorithm is not available. 
Additionally, the MODIS FRP estimates were adjusted using a published adjustment factor 
(unitless) that was defined as a function of the MODIS scan angle (Li et al., 2018b; Freeborn et 
al., 2011) to mitigate the underestimation of MODIS FRP at off-nadir view angles. 

 

2.1.2. GOES FRP 

The WildFire Automated Biomass Burning Algorithm (WF_ABBA Version 65) active 
fire product is produced from observations by the Imager sensor onboard the GOES satellites 
located at 135° W (GOES-W) and 75° W (GOES-E) above the equator, respectively (Schmidt 
and Prins, 2003). The pixel size in GOES-W (GOES-11 and 15) and GOES-E (GOES-13) 
increases from 4 to 8 km as the associated view zenith angle (VZA) varies from 30° to 70° 
across the CONUS. On routine-scanning schedule, the GOES-W senses the central and western 
CONUS every 5-15 minutes (the 0th, 10th, 15th, 30th, 40th, and 45th minute of every hour 
approximately), and the GOES-E observes the whole CONUS every 15 minutes (the 0th, 15th, 
30th, and 45th minute of every hour approximately) 
(http://www.ospo.noaa.gov/Operations/GOES/schedules.html). The WF_ABBA detects active 
fires from all these observations. In WF_ABBA, false alarms due to cloud impacts, very large 
VZA, and sensor noise are reduced by applying a temporal filter that considers a new fire pixel 
as a false alarm if it has been detected less than twice during the past 12 hours (Schmidt and 
Prins, 2003). The GOES WF_ABBA product provides, for each fire pixel, fire location 
(longitude and latitude), time, FRP, VZA, pixel size, brightness temperature at 4 µm and 11 µm 
bands, fire temperature, fire size, ecosystem type, and quality flag. The quality flag is divided 
into six categories: flag 0 – a good quality fire detection, flag 1 – a fire detection with saturated 
brightness temperature of the 4-µm band, flag 2 – a fire detection contaminated by clouds or 
thick smoke plumes, flag 3 – a high possibility fire detection, flag 4 – a moderate possibility fire 
detection, and flag 5 – a low possibility fire detection. FRP is not retrieved for a detection 
classified as flags 1, 2, or 5. The ecosystem type for a fire pixel is determined based on the 
United States Geological Survey (USGS) Global Land Cover Characterization (GLCC) data set, 
which contains 100 ecosystem types globally and 45 primary ecosystems across the CONUS. 
The GLCC was generated using 1-km AVHRR (advanced very high resolution radiometer) data 
from April 1992 to March 1993 (Brown et al., 1999).  

This study obtained the filtered GOES WF_ABBA active fire product for the period of 
2011-2015 from NOAA (http://satepsanone.nesdis.noaa.gov/pub/FIRE/forPo/). Note that the 
WF_ABBA fire data from July to August 2012 was missing due to the failure of collecting it 
from NOAA operational website so that the analyses for the year 2012 were excluded. Hereafter, 
the period of 2011-2015 represents 2011, 2013, 2014, and 2015. This product contains fire 
detections from GOES-W (GOES-11, replaced by GOES-15 since December 2011) and GOES-E 
(GOES-13). Approximately 56% of GOES fire detections from 2011 to 2015 were classified as 
low possibility fire detections (flag 5) which were false alarms in most cases. Therefore, fire 
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pixels with quality flags of 0, 1, 2, or 3 were used and a fire pixel categorized as flag 4 or 5 was 
considered only if it was detected at least three times per day or at least once with a flag value < 
3. Thus, FRP was obtained from observations with flags 0, 3 and 4 while fire duration was 
determined based on the all the selected fire detections.   

 

2.2. Adjustment of GOES FRP at large view zenith angles  

An empirical model was established using GOES-W FRP and GOES-E FRP to adjust the 
variation of GOES FRP with satellite view zenith angles. It is because FRP at large VZA might 
be influenced by the increase of radiance contribution from non-fire background large pixels 
(Schroeder et al., 2010). To do this, GOES-W FRP and GOES-E FRP were first compared to 
ensure their equivalence by selecting the contemporaneous fire pixels that were detected by these 
two satellites within ±5 minutes in a 0.1° grid (~7 - 10 km across latitudes 10° - 50°). The 
comparison was conducted in two steps. First, all spatiotemporally coincident fire detections 
were obtained if the VZA was the same from GOES-W and GOES-E during 2013 - 2014 in 
order to verify the similarity of their FRP retrievals. These fire detections were only available 
within 0.1° grids around the105° W longitude line with a VZA varying from 40° - 65°. The 
selected samples indeed demonstrated that FRP observations from the two GOES satellites were 
significantly correlated (R2=0.8) and approximately equivalent, with a difference of ~10% (Fig. 
1). The small difference could be associated with effects of sub-pixel features and different 
atmospheric paths between two GOES sensors on retrieval of GOES FRP (Peterson et al., 2013; 
Peterson and Wang, 2013).  
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Fig. 1. Comparison of GOES-E FRP with GOES-W FRP for coincident detections (within ±5 
minute) collected within 0.1° grids around the 105° W longitude line from 2013 to 2014. The 
solid line is the 1:1 line. 
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Second, the contemporaneous fire detections were selected from GOES-W with VZA 
ranging from 40° to 50° (pixel size from 4.8 to 5.5 km) and GOES-E with VZA varying from 30° 
to 70° (pixel size from 4 to 8 km) in order to quantify the FRP variation with VZA. Considering 
GOES-W FRP as a reference and ignoring the small variation of VZA-related pixel size, the ratio 
of GOES-E to GOES-W FRP was compared to the VZA variation from 30° to 70° (Fig. 2). Then 
the empirical model was established as: 
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FRP
+ b  R(θ ) = E = a                                                    (1) 

FRPW cθ + d

where R(θ) is the ratio of GOES-E FRP (FRPE) to GOES-W FRP (FRPW), θ is GOES-E VZA 
(radian), and the parameters (a, b, c, and d) are coefficients obtained by fitting median FRP ratio 
(Fig. 2).  

The fitted model shows that GOES FRP is almost constant if VZA ≤ 50° (Fig. 2). This 
verifies the assumption that GOES-W FRP variation within VZA of 40° - 50° is negligible. 
Further, the coefficient of determination (R2=0.8) demonstrates the model is well established and 
GOES FRP with VZA < 50° does not need to be adjusted. 
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Fig. 2. FRP ratio of GOES-E to GOES-W as a function of GOES-E VZA. The filled gray cycles 

are the median ratio at every 1-degree VZA from 30° to 70°, and one standard deviation was 
added as error bars. The black solid line is the fitted model and the dashed line is the FRP ratio 

with a value of 1.0. 

 

Giving that GOES-E FRP and GOES-W FRP are approximately equivalent at the same 
VZA as demonstrated in Fig. 1, the FRP influenced by VZA could be adjusted using the equation 
(2) that was deduced from equation (1): 

FRP
 = θFRPadj

                                                        (2) 
R(θ )

where FRPadj is the adjusted FRP and FRPθ is the GOES fire FRP observed at VZA of θ. For 

convenient purpose, hereafter the adjusted GOES FRP is simply referred to as GOES FRP.  
 

2.3. Calibration of GOES FRP against MODIS FRP 

GOES FRP was calibrated by comparing with MODIS FRP at a 0.25°×0.3125° grid. It is 
well demonstrated that the MODIS sensor has better fire detection capability than GOES due to 
higher spatial resolution, which enables MODIS to detect relatively smaller and cooler fires 
(Schroeder et al., 2010; Xu et al., 2010). Thus, two different approaches were separately applied 
to calibrate GOES FRP in grids based on the two cases whether contemporaneous MODIS FRP 
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observations within ±6 minutes of GOES observations were available or not available. 
Specifically, the MODIS FRP and the VZA adjusted GOES FRP (FRPadj) with the same GLCC 
ecosystem observed at a given time in a grid cell were first aggregated, respectively, which were 
referred to as grid GOES FRP (FRPGOES) and MODIS FRP (FRPMODIS) hereafter. When 
contemporaneous FRPGOES and FRPMODIS were available in a grid, the following calibration was 
applied: 

FRPcal (t) = FRPGOES (t) + FRPoffset (t)                                              (3) 

where t is time of GOES observation during a day; FRPcal(t) is the calibrated grid GOES FRP; 
FRPGOES(t) is the grid GOES FRP; and FRPoffset(t) is an FRP offset value at time t interpolated 
linearly from the difference between contemporaneous grid MODIS and GOES FRP for that day 
(Li et al., 2018b).  

The contemporaneous MODIS and the GOES FRP observations were not available in 
considerable grids. Thus, the following calibration was applied: 

FRPcal (t) = β0 + β1FRPGOES (t)                                                  (4) 

where FRPcal(t) and FRPGOES(t) are the same as in equation (3); β0 and β1 are calibration 
coefficients. 

The coefficients β0 and β1 were derived by comparing contemporaneous MODIS FRP 
and VZA adjusted GOES FRP in 30m Landsat burned areas. To do this, we obtained 628 fire 
events for the time period between 2013 and 2015 across the CONUS from the Monitoring 
Trends in Burn Severity (MTBS) project (http://www.mtbs.gov/) (Eidenshink et al., 2007), 
where the size of burned area ranged from 2.3 to 884.4 km2. The Landsat burned areas were 
stratified based on the dominant land cover type: forests, shrublands, savannas, grasslands, and 
croplands, each of which was reclassified from GLCC ecosystems by a cross-walking method. 
For each burned area, the associated contemporaneous MODIS FRP and VZA adjusted GOES 
FRP were calculated and applied to derive land-cover specific calibration coefficients using a 
simple ordinary least squares regression (Table 1). 
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Table 1. Calibration coefficients for five land cover types 334 

Land cover type 
Calibration coefficients 

2r  
Number of 

burned areas  
β0 β1 

Forest 328 1.96 0.82 304 

Shrublands 185 1.43 0.86 55 

Savannas 150 1.76 0.94 46 

Grasslands 158 1.05 0.65 176 

Croplands 84 1.09 0.85 47 

 335 

2.4. Fusion of MODIS FRP with the calibrated GOES FRP 336 



The calibrated grid GOES FRP was fused with the grid MODIS FRP. The fusion was 
performed at a 0.25°×0.3125° grid in each 15-minute bin during a day using the following 
equation: 

FRPfused = w1FRPMODIS + w2 FRPcal                                               (5) 

where FRPfused is the fused grid FRP within a 15-minute bin; FRPMODIS and FRPcal are 
respectively the grid MODIS FRP and the calibrated grid GOES FRP; and w1 and w2 are fusion 
weights in which w1=1 and w2=0 if FRPMODIS was valid, and w1=0 and w2=1 if only FRPcal was 
available.  
 This fusion algorithm was visually illustrated in Fig. 3. The VZA adjusted GOES FRP 
without calibration is on average 73% smaller than the fused FRP in a 15-minute bin, but the 
MODIS FRP aligns very well with the fused FRP. This demonstrates that the fused FRP could 
characterize diurnal FRP cycle effectively. 
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Fig. 3. Diurnal variations of GOES FRP (not calibrated, denoted as “raw”), MODIS FRP, and 
fused FRP (FRPfused) over the Rim Fire from 20 to 26 August 2013. Each GOES FRP sample is 
the total FRP aggregated from the VZA-adjusted grid GOES FRP within fire perimeter at a 
GOES observing time, and each MODIS FRP sample is the total FRP aggregated from grid 
MODIS FRP within fire perimeter. 
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2.5. Reconstruction of diurnal FRP cycles 
2.5.1. Establishment of diurnal FRP climatology 

The climatology of diurnal GOES FRP was established to predict FRP for temporally 
missing observations caused by obscuration of clouds, very thick smoke plume, and detection 
capability of sensors. Because fire properties and behaviors could differ greatly among 
ecosystems, which are related to fuel characterizations (availability, amount, and spatial 
distribution, etc.) and thus are linked to fire activity (e.g., fire type and intensity) (Pausas and 
Ribeiro, 2013), the diurnal FRP climatology was investigated separately for different GLCC 
ecosystems. Since more than 95% of GOES active fires were observed in 18 of 45 primary 
GLCC ecosystems across the CONUS, the related 18 ecosystems were selected separately, and 
the rest (37 types) was combined into one type. Thus, a total of 19 ecosystem types were divided. 
The diurnal FRP climatology for each ecosystem was generated based on the following steps. 
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First, for each 15-minute bin, the calibrated GOES FRP values in each grid cell across the 
CONUS from 2011 to 2015 were grouped at an interval of every 20MW. Next, the probability 
density of FRP observations in each group was estimated using a kernel density estimation 
approach (Venables and Ripley, 2002). The groups with GOES FRP density less than 0.05% of 
the maximal group density within a specific 15-minute bin were then removed because small 
samples could greatly bias FRP estimates. Finally, the mean FRP was calculated from the 
remaining GOES FRP values every 15 minutes, which was used to determine the diurnal FRP 
climatology for each ecosystem. As a result, diurnal FRP climatology was obtained for the 19 
GLCC ecosystems separately (Fig. 4), which generally presents a trough during 6:00-8:00 and a 
peak during 13:00-16:00 (local time). The diurnal variations of FRP climatology are large in the 
cool conifer forest ecosystem and shrub-related ecosystems but are small in the deciduous 
broadleaf forests, mixed forests, and crop-related ecosystems. Although the diurnal FRP 
climatology could vary monthly in the magnitude, it shows a very similar diurnal shape based on 
the example in the cool conifer forest (not presented here). Thus, the seasonal variation in diurnal 
FRP climatology was not considered in this study.   
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Fig. 4. Ecosystem-specific diurnal FRP climatology across the CONUS: (a) four GLCC 
forest ecosystems, (b) eight GLCC grass, shrub, and savanna ecosystems, (c) six GLCC crop 
ecosystems, and (d) the combination of other 37 GLCC ecosystems. 
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The climatological monthly maximum diurnal burning duration (MMDBD, hours) was 
further calculated, which was used to quantify the potential fire duration during a day. The 
MMDBD was defined as the longest period that active fires could be detected by satellites during 
a day, which represents the temporal boundaries of the satellite detectable fires. The MMDBD 
could vary with fuel, fire weather, and fire types. The climatological MMDBD was calculated by 
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extracting the mean timings of the earliest and latest ten GOES fire detections (including fire 
detections without FRP retrievals) during 2011-2015. As a result, the MMDBD was also 
calculated for the 19 ecosystem types.  

In addition, the hourly and monthly possibility of GOES fire detection was also derived 
for the 19 ecosystem types. It is the percentage of fire detections sensed by GOES every hour 
during a day or every month in a year, which indicates the diurnal and seasonal possibilities of 
the occurrences of fires.  

The climatology of both the MMDBD and the hourly and monthly possibility of GOES 
fire detections were illustrated using an example in three GLCC ecosystems showing large 
variations (Fig. 5). These statistical data were used to determine the potential burning duration of 
a fire as described in Section 2.5.2. 
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 404 
Fig. 5. Monthly maximum diurnal burning duration (MMDBD) and hourly and monthly density 
of GOES active fire detections in three ecosystems: (a) tall grasses and shrubs, (b) mixed forests, 
and (c) cool conifer forests. The black lines are MMDBD, and the horizontal and vertical 
densities are proportions (in percentage) of GOES active fire detections at an interval of an hour 
and a month, respectively.  
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2.5.2. Reconstructing diurnal FRP cycles 

Diurnal FRP cycles were reconstructed from the fused grid FRP and diurnal FRP 
climatology at a 0.25°×0.3125° grid for each ecosystem based on the following three steps: 

1. The fused grid FRP (FRPfused, see section 2.4) was fitted to the FRP climatology in the same 
ecosystem by shifting an offset (Zhang et al., 2012). By assuming that the shapes of diurnal 
FRP cycles were similar for a given ecosystem, the offset was calculated using a least square 
method from a set of FRPfused observations and the corresponding values on the diurnal FRP 
climatology curve. Thus, the shifted FRP climatology represents the potential diurnal FRP 
curve for the FRPfused observations.  

2. Temporal gaps were determined using actual FRPfused observations and climatological values 
of MMDBD and hourly and monthly density of active fire detections. A temporal FRP gap 
was the period of one or more consecutive 15-minute bins in which FRPfused observations 
were not available. Because fires (except for large forest fires) could only burn continuously 
a few hours instead of an entire day in a grid, the length of a temporal gap was determined 
based on the ecosystem-specific MMDBD and the hourly and monthly possibility of GOES 
fire detections. The possibility of fire occurrence generally is stronger in the early afternoon 
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and during fire seasons when fire weather is more favorable for combustion, and more fuels 
are available to burn (Giglio et al., 2006; Giglio 2007). Therefore, a fire most likely burns 
longer during the time periods with the stronger possibility of fire detections than the other 
time periods. For each FRPfused observation, a fire was assumed to burn continuously for:  
(a) one hour before and after the fire observation (with and/or without FRP retrievals), 

respectively, if the observation was collected in the early afternoon (13:00-15:00 local 
solar time) during fire seasons;   

(b) 30 minutes if the observation was collected in other hours during fire and non-fire 
seasons, and it was located within MMDBD (section 2.5.1);  

(c) 15 minutes if the observation was located outside of MMDBD. This is because a fire 
seldom occurs (or too small/cool to be detected) in hours beyond the MMDBD. 

3.   Missing FRP values in temporal gaps were interpolated using the valid fused FRP or 
predicted using the shifted FRP climatology. If a gap was less than one hour, the missing 
FRP values were linearly interpolated from the fused FRP of their nearest neighbors at the 
two sides. Otherwise, the shifted FRP climatology was selected as predictions. Finally, a 
reconstructed diurnal FRP cycle was obtained from a combination of actual FRPfused 
observations and the interpolated and predicted FRPfused in temporal gaps. 

The process of reconstructing diurnal FRP was demonstrated using four different cases of 
fires occurred in cool conifer, conifer, dry woody scrub, and cropland dominated grids (Fig. 6). 
Gaps (yellow filled triangles) were mainly resulted from fire observations without FRP retrievals 
due to the obscuration of clouds and thick smoke plumes, particularly in southeastern (e.g., Fig.6b) 
and western CONUS (e.g., Fig.6a,c). FRP values in gap length less than one hour (red open 
cycles) were linearly interpolated while the values in longer gaps (red filled triangles) were 
predicted using shifted FRP climatology.  

Furthermore, a simulation was conducted to evaluate the performance of the climatology-
based method in reconstructing diurnal FRP cycle in a well-observed fire that occurred in cool 
conifer forest on 19 August 2013 (37.0°N, 119.06°W). Specifically, 10% of the valid fused FRP 
observations during a day were randomly extracted as good observations and the rest observations 
were assumed as gaps to reconstruct the diurnal FRP cycle based on the diurnal FRP climatology, 
which was applied to calculate FRE. This process was repeated 1000 times. The same simulation 
was also conducted using 20% and 30% of all the valid observations. The result shows that the 
FRE on average based on the simulated diurnal FRP cycle is very similar to the FRE estimated 
using all valid observations with a difference of 0.34 ± 17%, 0.1 ± 14%, and 0.01 ± 10%, for 10%, 
20%, and 30% of all the valid observations,  respectively.  This simulation suggests that 
reconstruction of diurnal FRP cycle based on the climatologic FRP performs well. 
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  462

Fig. 6. An example of reconstructing diurnal FRP cycles using the fused FRP observations and 
FRP climatology for fires burned in four different ecosystems. (a) Cool conifer fire on 2 August 
2014 (41.375°N, 122.968°W) in California, (b) Conifer fire on 3 July 2011 (29.5°N, 81.563°W) 
in Florida, (c) Dry woody scrub fire on 2 June 2014 (33.5°N, 110°W) in Arizona, and (d) 
cropland fire on 19 April 2014 (47.75°N, 111.875°W) in Montana.  
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2.6. Estimation of FRE and biomass-burning emissions 

FRE was estimated for each grid cell from diurnal FRP cycles. Fires in each 15-minute 
bin were assumed to burn consistently with an FRPfused value, so that the total hourly FRE in a 
grid was estimated as: 

 
FRE =∑

p p q

FRE
i

=∑ ∑ (FRP
fused

(i, j)× 900)                                       (6) 
i=1 i=1  j=1 

where FRE is the hourly fire radiative energy (FRE), FREi is hourly GOES-MODIS FRE in the 
ith ecosystem, p (p=19) is the number of ecosystems where active fires were detected in a grid by 

GOES and/or MODIS, FRPfused (i , j )  is the reconstructed diurnal fire radiative power (MW) in 

the jth 15-minute bin (900 seconds) and the ith ecosystem, and q (q=4) is total number of 15-
minute bin within one hour.  

The FRE estimated from diurnal FRPfused cycles is referred as to “GOES-MODIS FRE”. 
It was used to calculate grid-level biomass-burning emissions, which is referred as to “GOES-
MODIS BBE”, using the following equation:   
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BBEFRE =∑
p

( ) ∑
p

BCi × EFi = (β × FREi × EFi )                                      (7) 
i=1 i=1

where BBEFRE is total hourly emissions (kg) for a grid cell, BCi and EFi are hourly biomass 
consumption (kg) and PM2.5 or CO emissions factor for the ith ecosystem (a total of p 
ecosystems that is the same as equation (6)) in a grid cell, respectively. The emission factor was 
adopted from the GFED4 (Table 2) (van der Werf et al., 2017) that were compiled based on 
(Akagi et al., 2011; Andreae and Merlet, 2001). This is to reduce the emission-factor-caused 
difference in comparison with existing inventories in section 2.7.2, although emission factor 
could vary significantly with combustion efficiency (Liu et al., 2017; Polivka et al., 2016). 
Because emission factor is only available for five land cover types (Table 2), the ecosystem 
specific emission factor in equation (7) was obtained by cross-walking GLCC classes to these 
land cover types. β is the FRE biomass combustion coefficients (FBCC, 0.368 kg MJ-1) (Wooster 
et al., 2005), and FREi is hourly GOES-MODIS FRE in the ith ecosystem. Note that both PM2.5 
and CO estimates present very similar temporal and spatial pattern because their only difference 
is emission factors, so that only PM2.5 estimates are presented in detail in the result section. The 
CO is only discussed in order to improve the evaluation of GOES-MODIS BBE estimates (c.f.  
Sections 2.7.3 and 3.5).     
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Table 2. Emission factors (units: g kg-1) of PM2.5 and CO 499 

Emission species Forest Savanna, Shrubs, grasslands  Croplands 

PM2.5 

CO 

12.9 

88.0 

7.17 

63.0 

 6.26 

 102.0 

 500 

2.7. Evaluations of biomass-burning emissions 

Because of the lack of ground truth emissions, GOES-MODIS BBE was evaluated by 
comparing with other datasets. These datasets were: (1) BBE modeled using Landsat burned area 
and fuel loadings, which was called Landsat BBE; (2) existing emissions inventories; (3) the 
hourly BBE simulated by a biogeochemical model.  

 

2.7.1. Comparison of GOES-MODIS BBE with Landsat BBE  

GOES-MODIS BBE was first evaluated by comparing with Landsat BBE using the 
simple ordinary least squares regression. The GOES-MODIS BBE was estimated from FRE 
biomass combustion coefficients and GOES-MODIS FRE using equation (7), and the Landsat 
BBE was calculated based on total burned area and fuel loading in a fire event as described in 
equation (8) (see the following two paragraphs). Because estimation of GOES-MODIS BBE and 
Landsat BBE applied the same emission factors, the evaluation of GOES-MODIS BBE was 
conducted by comparing GOES-MODIS FRE based biomass consumption (BC) with Landsat 
burned area based BC. Landsat BC was calculated in a set of burned areas. Specifically, a 
Landsat burned area (corresponding to a fire event) was selected if the MODIS and GOES active 
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fire detections covered more than 95% of the burned area, which minimized the effect of missing 
detections from MODIS and GOES observations. As a result, a total of 129 qualified burned 
areas were extracted in 2011, 2013, 2014, and 2015, which were located in the western CONUS.  

In a Landsat burned area, the BC was estimated using the conventional model (Seiler and 
Crutzen, 1980) as:  

∑
n

a ∑
3

 BCLands t = At ,k M t ,kCt ,k                                                  (8) 
t=1 k =1

where BC 2
Landsat is the total biomass consumption (kg), A is the Landsat burned area (km ), M is 

FCCS (Fuel Characteristic Classification System) fuel loading (kg m-2), C is the combustion 
completeness (unitless: 0-1), t is FCCS fuelbed category, n is the number of fuelbed 
categories, and k is MTBS burn severity class.   

The three parameters in Equation (8) were calculated in the same way as Li et al (2018b). 
Specifically, the burned area A was calculated from three Landsat MTBS severity classes (low, 
moderate, and high). Fuel loading M was obtained from the FCCS 3.0 that provides a 30-m 
fuelbed map and an associated lookup table of fuel loadings 
(http://www.fs.fed.us/pnw/fera/fccs/maps.shtml) for the year 2008. The FCCS 3.0 has 250 
fuelbeds, and each fuelbed is separated into one or up to 18 categories (Ottmar et al., 2006). The 
study used the burn-severity-specific combustion completeness values (Li et al., 2018b) that 
were obtained by summarizing the published values associated with burn severity (Campbell et 
al., 2007; Ghimire et al., 2012) because burn severity reflects the degree of above-ground organic 
matter consumption from fire and relates to changes in living and dead biomass (Eidenshink et 
al., 2007; Keeley, 2009). 

 

2.7.2. Comparison of GOES-MODIS BBE with existing emissions inventories 

The monthly and annual PM2.5 in GOES-MODIS BBE from 2011 to 2015 were 
compared to existing six global emission inventories (GFED4, GFASv1.0 and v1.2, QFEDv2.4r6, 
and FINNv1.5, FEERv1.0g1.2, and FLAMBE) and two regional inventories (WFEIS0.5, and 
NEI 2011&2014) across the CONUS (Table 3). Among these emission inventories, six of them 
are based on the bottom-up approaches, and two of them are based on top-down approaches. 
Bottom-up approach refers to the calculation of BBE using emissions factors (bottom-up derived) 
and biomass consumptions that are estimated from either burned areas and fuel loadings or FRE; 
whereas the top-down approach models BBE using FRE and the top-down coefficients that are 
derived from FRP and satellite observed Aerosol Optical Depth (AOD) (Ichoku and Ellison, 
2014). Note that the GFAS product contains two different versions for the period of 2011-2015: 
GFASv1.0 is available from January 2011 to September 2014 and the GFASv1.2 with better 
quality control covers from October 2014 to December 2015.  
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Table 3. Six global and two United States emissions inventories. 556 

Inventories 
Scale & 
Resolution 

Method Source data 
References & 
products sites 

GFED4  

GFASv1.0&1.2 

FINNv1.5 

FLAMBE 

QFED2.4r6 

FEERv1.0g1.2 

WFEISv0.5 

NEI 

Global 

0.25˚×0.25˚, 
monthly 

Global 
0.5˚×0.5˚ & 
0.1˚×0.1˚, daily 

Global 1 km, 

daily 

Global 1-4 km, 
Hourly 

Global 
0.25˚×0.3125˚, 
daily 

Global 

0.1˚×0.1˚, daily 

United States 
(CONUS & 
Alaska), annual 

United States 
(county & 

States), annual 

bottom-up 

bottom-up 

bottom-up 

bottom-up 

top-down 

top-down 

bottom-up 

bottom-up 

Burned area (MCD64A1), 

Fuel loadings 
(biogeochemical modeled)  

MODIS FRP 

(MOD14/MYD14) 

Burned area 
(MOD14/MYD14, 

MCD12Q1), Fuel 
loadings (literatures)  

Burned area (WF_ABBA 
GOES, MOD14/MYD14),  

Fuel loadings (literatures) 

MODIS FRP 

(MOD14/MYD14) 

GFAS1.2 FRP flux, 

emissions coefficients 

Burned area (MCD64A1)  
Fuel loadings (FCCS) 

Observations from ground 
facilities and satellites 

van der Werf et al., 2017 

Giglio et al., 2013 
http://www.falw.vu/~gwerf/ 

GFED/GFED4/ 

Kaiser et al., 2012 
http://join.iek.fz-juelich.de/ 
macc/access 

Wiedinmyer et al., 2011 
http://bai.acom.ucar.edu/ 

Data/fire/ 

Reid et al., 2009 
(personal communication) 

Darmenov and Silva., 2015 
ftp://ftp.nccs.nasa.gov/aerosol/ 
emissions/QFED/v2.4r6/ 

Ichoku and Ellison., 2014 
http://feer.gsfc.nasa.gov/ 
data/emissions/ 

French et al., 2014 
https://wfis.mtri.org/ 

https://www.epa.gov/air-
emissions-inventories/ 

 557 

2.7.3. Comparison of GOES-MODIS BBE with model-simulated BBE  

GOES-MODIS BBE was further evaluated using the model-simulated BBE in the Rim 
Fire. The Rim Fire is the third largest fire event in the California fire records. The model-
simulated hourly BBE (CO emissions) was estimated by performing an inversion on available 
ground-based and airborne-based measurements, including CO, over the Rim Fire from 21 to 27 
August 2013 using the Weather Research and Forecasting model coupled with Chemistry (WRF-
Chem) (Saide et al., 2015). The airborne CO measurements were collected by the NASA DC-8 
flights during eight hours from 26 (18:00 UTC) to 27 (02:00 UTC) August 2013 (Toon et al., 
2016). This BBE dataset was obtained by personal communication. The model-simulated CO 
emissions were compared to GOES-MODIS BBE (CO) over the 4-km modeling domain on an 
hourly basis.  
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3. Results 

3.1. Spatial distribution of PM2.5 emissions 
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Biomass burnings annually release on average 717 Gg PM2.5 emissions across the 
CONUS in the four years of 2011, 2013, 2014, and 2015 (Fig. 7). The PM2.5 emissions are 
spatially contributed by a mixture of fires in forests, shrubs, and grasses in the western CONUS 
(419 Gg or 58%), agriculture and forest fires in the southeastern CONUS (92 Gg or 13%), prairie 
grass fires in Kansas and Oklahoma states (37 Gg or 5%) in the central CONUS, and agriculture 
burnings in the Mississippi River Valley (45 Gg or 6%) in the central south CONUS. However, 
the PM2.5 emissions are very limited in the northeastern CONUS.  
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 580 
Fig. 7. Annual PM2.5 emissions at a 0.25°×0.3125° grid across the CONUS in four years of 
2011, 2013, 2014, and 2015. 
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PM2.5 emissions vary greatly among CONUS states (Fig. 8). The high mean annual 
PM2.5 emission appears in five Pacific Northwest states: California (115 Gg), Idaho (58 Gg), 
Washington (54 Gg), Oregon (41 Gg), and Montana (34 Gg). The total PM2.5 emissions in these 
states and California alone accounts for 42% and 16% of the annual PM2.5 in the CONUS, 
respectively. They are followed by the PM2.5 emissions in three southwest states (Texas: 47 Gg, 
Arizona: 39 Gg, and New Mexico: 24 Gg), and three southeast states (Florida: 32 Gg, Arkansas: 
29 Gg, and Georgia: 26 Gg). During the four years, the highest PM2.5 appears in 2015 and 2011, 
particularly in the Pacific Northwest states, and most southwest and southeast states. 
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Fig. 8. Annual mean PM2.5 emissions in 48 states in four years of 2011, 2013, 2014, and 2015. 
The red dots represent annual mean PM2.5 emission and the vertical bars (in blue) show the 
maximum and minimum of annual PM2.5 emission in each state.  
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Annual PM2.5 emissions differ among land cover types (Fig. 9). The biomass burnings 
are on average 6% (42 Gg), 24% (174 Gg), and 70% (501 Gg) in the croplands, grasslands-
shrublands-savannas, and forests, respectively.  
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Fig. 9. Annual PM2.5 emissions in land cover types: croplands, forests, and grasslands-
shrublands-savannas in four years of 2011, 2013, 2014, and 2015. 
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3.2. Temporal variation in the PM2.5 emissions 

PM2.5 emissions display a strong diurnal variation across the CONUS (Fig. 10). The 
PM2.5 emissions with all ecosystems as a whole show a unimodal diurnal variation, which 
increases sharply at local time 9:00, reach the peak between 13:00 and 14:00, and then decrease 
until the midnight. The diurnal variations in forests, croplands, and savannas-shrublands-
grasslands display a single peak approximately between 13:00 and 14:00. The PM2.5 estimates 
in daytime (6:00-18:00) differ considerably from the nighttime (18:00-6:00). Overall, the 
daytime PM2.5 emissions are 272% of the nighttime emissions but this discrepancy varies with 
ecosystem. The daytime emissions account for 81% in grasslands, savannas and shrublands, and 
94% in croplands. In forests, approximately 90% and 10% of PM2.5 emissions are released 
during daytime and nighttime, respectively, in the eastern CONUS, whereas the nighttime 
burnings (especially from 18:00 to 24:00) in the western CONUS contribute 32% of PM2.5 
emissions. 
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Fig. 10. Diurnal variation of PM2.5 emissions across the CONUS. The solid line is the four-year 
mean PM2.5 emissions in every hour, and the shading area represents inter-annual variation. (a) 
All ecosystems, (b) forests (forests were divided by 100°W longitude line into two groups: 
western and eastern CONUS because of the distinct difference in fire characteristics in two 
groups (Malamud et al., 2005)), (c) croplands, and (d) a combination of grasslands, shrublands, 
and savannas.  
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Fig. 11. Four-year mean seasonal peak time (day of year (DOY)) of the PM2.5 emissions at a 
0.25°×0.3125° grid. 
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The peak time of seasonal PM2.5 emissions shows strong variations across the CONUS 
(Fig. 11). In the western CONUS, the emissions mainly reach peaks during July-September 
although the peak appears through winter and early spring months in a very small portion of 
areas. In the central CONUS, there are two main peak time periods: March to April in the middle 
central states (Kansas, Oklahoma, Missouri, Iowa, and Nebraska states), and July to September 
in other states. The peak time periods in the eastern CONUS are complex. Emissions reach the 
peak during the period from January to early April in most areas in Florida, August and 
September in the Mississippi river valley, and winter months in the south Mississippi and south 
Alabama.  

 

3.3. Evaluation of biomass-burning emissions estimated from GOES-MODIS FRE 

Total biomass consumption estimates calculated from the GOES-MODIS FRE (BCFRE) 
are comparable with those estimated from 30m Landsat burned areas and FCCS fuel loadings 
(BCLandsat) (Fig. 12). BCFRE in the 129 selected fire events, which ranges from 0.03 - 5.7 Tg, is 
significantly correlated to BC 2

Landsat (R =0.85, p<0.001) that ranges from 0.01 - 4.8 Tg. Overall, 
BCFRE is relatively underestimated over some fires but overestimated in the other fires compared 
to BCLandsat. Overall, BCFRE is well comparable (~4% larger) with BCLandsat. 
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Fig. 12. Comparison between the GOES-MODIS-FRE based total biomass consumption (BCFRE) 
and the Landsat-burned-area-based total biomass consumption (BCLandsat) across the western 
CONUS. (a) Distribution of the 129 selected fire events from 2011 to 2015. (b) Scatterplot of 
BCFRE against BCLandsat. 
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The monthly GOES-MODIS PM2.5 reveals seasonal similarity and discrepancy with six 
global emission inventories (Fig. 13). The overall similarity is found that the emissions generally 
increase from January, reach the first peak in March or April, decrease in May, but climb up 
again rapidly and reach the second peak in August, and then decrease until the end of a year. 
However, differences are remarkable in an individual year among inventories. For instance, the 
highest peak in FEERv1.0g1.2 PM2.5 occurred in April in 2011 and 2014, which contrasts 
sharply with the GOES-MODIS PM2.5 and all other inventories. Moreover, FINNv1.5 PM2.5 
does not show distinctive fire season as other inventories, especially in 2011, 2013, and 2014. 
Overall, the seasonal pattern in the GOES-MODIS PM2.5 estimates matches the best with 
FLAMBE. 
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 662 
Fig. 13. Comparison of the monthly total GOES-MODIS PM2.5 emissions with other six 
inventories across the CONUS in four years of 2011, 2013, 2014, and 2015.  
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The average of monthly PM2.5 emissions in the four years varied largely among variou
BBE datasets (Table 4). The GOES-MODIS PM2.5 is similar to GFAS1.x and FINNv1.5 with
difference less than 12%. The GFED4 are the smallest among all BBE data sets, but comparab
with the GOES-MODIS PM2.5 from October to following February (Fig. 13). In contrast, the 
FEERv1.0g1.2, FLAMBE, and QFEDv2.4r6 are approximately larger than the GOES-MODIS
PM2.5 by a factor of 1, 2, and 7, respectively.  
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Table 4. The average of monthly PM2.5 emissions (Gg) of the GOES-MODIS and six 
inventories in four years of 2011, 2013, 2014, and 2015 
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GOES-MODIS GFED4 FINNv1.5 GFASv1.x FEERv1.0g1.2 FLAMBE QFEDv2.4 

59.7 28.2 50.5 55.3 100.2 181.6 485.6 
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The annual GOES-MODIS PM2.5 was also compared with two annual inventories of 
WFEISv0.5 in 2011 and 2013, and NEI in 2011 and 2014. The comparison shows that the annual 
GOES-MODIS PM2.5 is on average 37% larger than WFEISv0.5 in 2011 and 2013, but 54% 
smaller than NEI in 2011 and 2014. 

The hourly CO estimates from the GOES-MODIS and the WRF-Chem model show 
overall similar temporal patterns in the 2013 Rim Fire, California, particularly when the model 
was constrained by both ground-based and airborne-based observations (Fig. 14). During the 
eight hours from 18:00 UTC (26 August) to 02:00 UTC (27 August) between two gray dashed 
lines when the WRF-Chem model was constrained by both the airborne-based and ground-based 
observations, the GOES-MODIS CO is almost the same as the model-simulated CO, with a 
difference of less than 1% on an hourly average. However, the discrepancy significantly 
increases during other periods when the model was constrained only by the ground-based 
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observations. The GOES-MODIS CO on hourly average is 38% and 164% of the model-
simulated CO during the daytime (14:00-24:00 UTC) and nighttime (1:00-13:00 UTC), 
respectively.  
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Fig. 14. Comparison of hourly CO emissions in the Rim Fire over the 4-km modeling domain. 
The red line is the GOES-MODIS CO estimates, and the light blue area represents the estimates 
simulated by the WRF-Chem model. CO simulation from WRF-Chem model was performed 
using both ground- and airborne-based observations during the time period within two gray dash 
lines (18:00 UTC on 26 to 02:00 UTC on 27 August) while only the ground observations during 
the rest time period. 
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4. Discussion 

Satellite-based FRP offers a potential tool for improving the accuracy of BBE estimates 
in near real-time, which elevates the application capability of BBE in modeling air quality, and 
environmental and metrological conditions (Kaufman et al., 1998; Peterson and Wang, 2013; 
Peterson et al., 2014; Roberts and Wooster, 2008; Wooster, 2002; Wooster et al., 2005; Zhang et 
al., 2012). High-quality BBE could be calculated from diurnal FRP variations if FRP 
observations are available at a high spatiotemporal resolution. However, the existing solutions of 
FRP from either MODIS or geostationary satellites alone hardly produce BBE that satisfies 
models for forecasting air quality and environmental changes (Andela et al., 2015). By fusing the 
high temporal GOES FRP with high spatial MODIS FRP observations, this study reconstructed 
diurnal FRP cycles every 15 minutes to estimate hourly BBE at a 0.25°×0.3125° grid across the 
CONUS from 2011 to 2015.  

This study indicates the importance of diurnal FRP cycles in the estimation of BBE. 
MODIS FRP has been commonly used to calculate daily mean FRP flux and thereafter estimate 
daily FRE and BBE (Darmenov and Silva, 2015; Kaiser et al., 2012), or directly related to BBE 
estimates (Ichoku and Ellison, 2014; Ichoku and Kaufman, 2005) by assuming that MODIS 
observations are able to capture the structure of diurnal fire activities. However, MODIS FRE 
and BBE could contain high uncertainties because of the long temporal gaps between any two 
valid observations. Although there are as many as four observations during a day, MODIS FRP 
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retrievals are not available for the fires with the obscuration of clouds, thick smoke plumes, or 
tree canopies. This is particularly the case for the short-life agriculture burnings and fires occur 
in cloud-frequent-covered southeastern CONUS. Although the MODIS diurnal FRP cycle could 
be established by assuming that FRP follows a Gaussian-shaped diurnal model (Andela et al., 
2015; Ellicott et al., 2009; Konovalov et al., 2014; Vermote et al., 2009), the GOES FRP 
demonstrates that the diurnal FRP cycle varies with ecosystems rather than presenting a simple 
uniform shape (Fig. 4). Furthermore, as hourly PM2.5 from GOES-MODIS FRP suggests that 
diurnal profile of PM2.5 in western CONUS forests is asymmetric, where fire activity during 
evening contributes a significant portion of daily PM2.5 (Fig. 10b). On the other hand, fire 
duration could vary greatly in different season and ecosystems (Fig. 5 and 6), which is able to be 
determined from GOES but not from MODIS observations. Consequently, it is critical to 
reconstruct diurnal FRP cycles and fire duration from geostationary satellites for accurately 
calculating FRE and BBE.   

This study also reveals the difference in spatiotemporal patterns of emissions from 
wildfires and agriculture burnings across the CONUS. The major sources of wildfires emissions 
vary spatially in the western CONUS interannually (Fig. 7). In California, for example, the 
annual PM2.5 has increased by approximately 300% from 2011 - 2015 (Fig. 7), which is most 
likely related to the exceptional drought underwent in the same periods (Asner et al., 2016; 
Griffin and Anchukaitis, 2014; Robeson, 2015). The big drought occurred in 2011 in the 
southwest CONUS (Texas, Arizona, and New Mexico) elevated PM2.5 emissions by 530% that 
accounted for 30% (298 Gg) of the annual PM2.5 in the CONUS (Fig. 7) (Nielsen-Gammon, 
2011). In contrast, the agriculture burnings (the Mississippi River Valley and the Florida 
Everglades) burn annually with very small inter-annual variation in PM2.5 emissions (Fig. 7), 
which is similar to the small interannual variation in cropland burned areas across the CONUS 
(McCarty et al., 2009; Randerson et al., 2012; Zhang and Kondragunta, 2008). Moreover, the 
average diurnal variation of PM2.5 demonstrates that the major emissions from agriculture 
burning mainly released from 9:00 to 18:00 local solar time (Fig. 10c), which is most likely 
related to timings of agriculture burning practices (Brenner and Wade, 2003; Kim Oanh et al., 
2011; McRae et al., 1994). However, wildfires can burn during nighttime and contribute a 
significant portion of emissions compared to daytime emissions (Fig. 10b). 

The GOES-MODIS BBE estimates are overall comparable with the Landsat based BBE 
estimates over the selected 129 fires although their difference could be considerable in some 
individual fire events. The discrepancy could be attributed to uncertainties of parameterization in 
the two different BBE estimating methods. For the Landsat based BBE (equation (8)), 
parameters of the FCCS fuel loading and combustion completeness likely contain considerable 
uncertainty. The FCCS fuel loading is static, which does not reflect seasonal and interannual 
variations associated with variation of fuel moisture and changes of fuel bed (Pellizzaro et al., 
2007). Combustion completeness was summarized from a large number of published sources 
across the CONUS (Li et al., 2018b), which may not adequately represent the variation in fire 
behavior and fuel moisture (Hély et al., 2003). On the other hand, the uncertainty in GOES-
MODIS BBE could be raised from the calculation of satellite FRP and the reconstruction of FRP 
diurnal cycle. Although MODIS and GOES FRP was adjusted to reduce the view angle effects  
and GOES FRP was further calibrated against MODIS FRP, MODIS and GOES FRP could be 
affected by other factors, including attenuation of tree canopy (Roberts et al., 2018) and effect of 
sub-pixel features on FRP retrieval (Peterson et al., 2013; Peterson & Wang, 2013). Nevertheless, 
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for the 2013 Rim Fire in California, both the GOES-MODIS based biomass consumption (4.5 Tg) 
and the Landsat based estimate (4.8 Tg) are similar to the Lidar-and-Landsat based estimates of 
biomass consumption (3.93 - 6.58 Tg) in (Garcia et al., 2017). 

Although comparisons show similarities and discrepancies among BBE inventories, the 
novelty of algorithm developed in this study is to calculate the GOES-MODIS emissions by 
improving diurnal FRP and FRE quantification while most other methods focus on tuning the 
coefficients or scaling factors to convert FRP to fire emissions. Generally, the emissions from the 
top-down-approach-based QFEDv2.4r6 and FEERv1.0g1.2 are larger than those from the 
bottom-up-approach-based estimates by a factor of 1-7, which has also been found in regional 
(Zhang et al., 2014) and global emissions estimates (Ichoku and Ellison, 2014; Kaiser et al., 2012; 
Zhang et al., 2012). It is likely due to the fact that both the QFED and FEER use large 
coefficients (converting FRP to emissions) that are adjusted using AOD observations for 
atmospheric models (Darmenov and Silva, 2015; Ichoku and Ellison, 2014). Moreover, the 
FEER emissions show the highest peaks during spring months in the years 2011 and 2014 while 
other inventories reveal the highest peaks in summer months (Fig. 13). During spring months, 
majority of fires occur in central and southeastern CONUS (Fig. 11) where the smoke plumes 
have not been well studied (Val Martin et al., 2010). This is likely associated with the abnormal 
peaks in FEER emissions because smoke plume injection height is critical in deriving the FEER 
emissions coefficients (Ichoku and Ellison, 2014). Although the GOES-MODIS PM2.5 is 
quantitatively comparable with GFASv1.x (Table 4), the mean annual total FRE of GOES-
MODIS is 152% of FRE estimated from GFASv1.x (this result did not show here). This 
discrepancy in FRE is most likely offset by the much larger biomass combustion factors used in 
GFASv1.x (Kaiser et al., 2012). The GOES-MODIS PM2.5 is also numerically similar to 
FINNv1.5 (Table 4) but FINNv1.5 emissions estimates are highly uncertain due to several 
uncertainty sources, especially the burned area that is simply estimated from MODIS active fire 
counts (Wiedinmyer et al., 2011). Among all bottom-up-approach-based inventories, the 
FLAMBE is larger than others by a factor of 2-4 (Table 4), which is similar to the previous 
finding obtained by comparing FLAMBE with GFED across the CONUS (Reid et al., 2009). The 
FLAMBE emission estimates could be overestimated in large fires in the western CONUS 
because large fires (or fire clusters) greatly boost up FLAMBE emissions in Northern Africa 
(Zhang et al., 2014). Nevertheless, the seasonal variation of the GOES-MODIS matches the best 
with FLAMBE (Fig. 13), which is likely attributed to the use of GOES WF_ABBA data in both 
approaches. In contrast, GFED4 is the smallest (less by a factor of 1-4 than others), which could 
be related to the underestimates of MODIS burned areas (Randerson et al., 2012). The NEI is 
larger than all other bottom-up-approach-based inventories (except FLAMBE) by a factor of 2-3, 
which may suggest that the ground-based observations include many more fires than satellites 
detected fires (Short, 2015). However, the NEI only produces annual emissions calculated from 

fuel loadings and burned area reported from federal, state, and local agencies, which is lack 

of validations. To sum up, the differences in either models of emissions estimation or the 
methods of parameterization can result in significant discrepancy among inventories.  

The 15-minute diurnal FRP cycles reconstructed from the fused GOES and MODIS FRP 
have several advantages. First, FRP in small fires (10-30 MW) that are missed by GOES 
(Roberts and Wooster, 2008; Xu et al., 2010) are compensated by calibrating GOES FRP against 
MODIS FRP. Second, the reconstructed diurnal FRP cycles partially mitigate the 
underestimation of FRE due to omission errors in FRP retrievals from GOES and MODIS that 
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are attributed to the dynamic transitions of combustion phases and obscurations of clouds. 
During transitions of combustion phase, a fire is detectable from GOES or MODIS when it burns 
intensely in favorable conditions while it is omitted when it is cooling down and smoldering 
(Giglio et al., 2003; Wooster et al., 2003). Third, the reconstructed diurnal FRP cycles may well 
represent diurnal variations of fires in certain ecosystems. This was demonstrated by the good 
agreement of hourly CO emissions between the GOES-MODIS estimates and the WRF-Chem 
model simulation in the Rim Fire. It is particularly true compared to the WRF-Chem simulation 
that is constrained by both ground- and airborne-based measurements during 26 - 27 August 
2013 (Fig. 14).  

The fused FRP from MODIS and GOES retrievals and the reconstructed diurnal FRP 
cycles evidently enhance the capability of BBE estimates in near real-time; however, some 
uncertainties could still remain as the data processing is mostly empirical. However, the 
algorithm developed in this study is expected to reconstruct more accurate diurnal FRP cycles 
and improve BEE estimates by fusing FRP from new polar-orbiting and geostationary satellites 
in future. The Visible Infrared Imaging Radiometer Suite (VIIRS) onboard the Suomi National 
Polar-Orbiting Partnership (NPP) satellite and the Joint Polar Satellite System (JPSS) series is 
producing FRP at a spatial resolution of 750 m (at nadir), which can capture much smaller fires 
than MODIS does (Csiszar et al., 2014). On the other hand, the Advanced Baseline Imager (ABI) 
onboard GOES-R is to retrieve FRP at a spatial resolution of 2 km (at nadir) every 5 minutes 
(Schmidt et al., 2012), which is significantly improved relative to FRP from current GOES 
Imager.  
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5. Conclusions  

We reconstructed ecosystem-specific diurnal FRP cycles by fusing high temporal 
resolution GOES FRP with high spatial resolution MODIS FRP to estimate BBE across the 
CONUS. The reliable diurnal FRP cycles are essential to accurately calculate FRE that plays a 
key role in BBE estimation from both bottom-up and top-down models. While the estimation of 
BBE using limited daily observations of polar-orbiting satellites raises considerable uncertainties, 
the hourly GOES-MODIS BBE can be effectively estimated from diurnal FRP cycles in a 
0.25°×0.3125° grid, which could provide reliable inputs for modeling smoke transportation 
(Wang et al., 2006) and quantifying the BBE impact on air quality in near real-time (Wang et al., 
2018a). The derived hourly BBE profiles based on reconstructed diurnal FRP cycles (Fig. 10) 
help to redistribute daily (or longer temporal resolution) BBE inventories (e.g., QFED and GFED) 
to an hourly scale for near real-time applications and modeling simulations as well. Further, the 
GOES-MODIS BBE is comparable with the estimates using burned areas and fuel loadings in 
Landsat burned areas (~4% difference), and hourly emissions simulated using the WRF-Chem 
model (the best agreement with a difference < 1%). Moreover, the seasonal variation in GOES-
MODIS BBE also shows good agreement with existing inventories and the magnitude differs 
from existing inventories by a factor of less than seven, which is smaller than the difference of a 
factor of ~10 in Northern Africa as found in Zhang et al. (2014).  

Finally, the algorithm developed in this study provides a protocol to fuse FRP retrieved 
from the VIIRS and GOES-R ABI sensors. In this way, the diurnal FRP cycle with much higher 
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temporal and spatial resolutions could be reconstructed and the BBE estimates could be greatly 
improved. 
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